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The onset of convection in a low-Prandtl-number fluid confined in a uniformly rotating 
vertical cylinder heated from below is studied. The linear stability problem is solved for 
perfectly conducting stress-free or rigid boundary conditions at the top and bottom; 
the sidewalls are taken to be insulating and rigid. For these Prandtl numbers 
axisymmetric overstability leads to an oscillating concentric pattern of rolls. When the 
instability breaks axisymmetry the resulting pattern must in addition precess. The 
relationship between these two types of oscillatory behaviour is explored in detail. The 
complex interaction between different types of neutrally stable modes is traced out as 
a function of the Prandtl and Taylor numbers, as well as the aspect ratio. A qualitative 
explanation is provided for the multiplicity of modes of a given azimuthal wavenumber 
and its dependence on the parameters. Specific predictions are made for the Prandtl 
numbers 0.025, 0.49 and 0.78, corresponding to mercury, liquid helium 4 and 
compressed carbon dioxide gas. 

1. Introduction 
In a recent paper Goldstein et al. (1993) presented a detailed solution of the linear 

stability problem describing the onset of convection in a uniformly rotating right 
circular cylinder heated from below. The computations undertaken by Goldstein et al. 
were motivated by a recent experiment of Zhong, Ecke & Steinberg (1991, 1993) using 
water as the experimental fluid. These experiments revealed that the conduction state 
loses stability to non-axisymmetric modes that precess counter to the direction of 
rotation. That non-axisymmetric patterns should precess is an immediate consequence 
of the SO(2) symmetry of the system (Ecke, Zhong & Knobloch 1992). An unexpected 
result of the calculations was the discovery of two quite distinct modes of instability. 
The first type, called a body mode, is a convective mode of the type that are present 
in a non-rotating cylinder (MarquCs et al. 1993). These modes fill the interior of the 
container, and have low amplitude near the wall. If they break axisymmetry they 
precess, albeit slowly. The second type of mode, called a wall mode, is confined to the 
vicinity of the sidewall, and precesses much more rapidly. It is always non- 
axisymmetric. The existence of these modes was anticipated by Buell & Catton (1983) 
although their precession was not. Which mode is the one that first becomes unstable 
as the Rayleigh number is increased depends on the parameters of the system: the 
rotation rate measured by Taylor number F2, the aspect ratio I' of the cylinder and 
of course the Prandtl number CT. The calculated critical Rayleigh numbers, precession 
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frequencies and selected azimuthal wavenumbers for cr = 6.8 and r = 1 and 2.5 agree 
very well with the observations, as documented in Goldstein et al. (1993) and Zhong 
et al. (1993). 

The experiments hitherto performed have always been operated in the regime where 
the wall modes are the preferred mode of instability. The calculations of Goldstein 
et al. (1993) show, however, that body modes are preferred for sufficiently low rotation 
rates and sufficiently large aspect ratios. As the rotation rate increases (or the aspect 
ratio decreases) they are superseded by the wall modes. A significant aspect of the work 
of Goldstein et al. (1993) concerns the infinite aspect ratio limit of their calculations. 
Here it is found that it is the body modes that approach the results obtained by 
Chandrasekhar (1961) for an unbounded layer in the sense that the critical Rayleigh 
number approaches that computed by Chandrasekhar, while the precession frequency 
tends (in an oscillatory manner) towards zero, as the aspect ratio increases. Another 
way to look at Chandrasekhar’s result is as an approximation to the result for an 
axisymmetric roll pattern. As already mentioned such patterns do not precess, and are 
necessarily body modes; their critical Rayleigh number as a function of the rotation 
rate follows the Chandrasekhar result quite closely. The bifurcation to such modes is 
of course a steady-state one, in contrast to the bifurcation to non-axisymmetric modes 
which becomes a Hopf bifurcation as a result of the broken reflection symmetry in 
vertical planes (Ecke et al. 1992). 

The results for the unbounded layer show that for sufficiently small Prandtl numbers 
(cr < 0.68) and large enough rotation rates the initial instability takes the form of 
overstable oscillations (Chandrasekhar 1961 ; Clune & Knobloch 1993). One expects, 
therefore, that in a cylinder the bifurcation to axisymmetric rolls will also be a Hopf 
bifurcation for sufficiently low Prandtl numbers. In the nonlinear regime this 
bifurcation leads to either axisymmetric standing waves or travelling waves that 
propagate in the radial direction (Clune & Knobloch 1993), in contrast to the Hopf 
bifurcation for non-axisymmetric modes which gives rise to patterns that precess in the 
azimuthal direction. In this paper we verify the above hypothesis, and determine what 
happens to the overstable modes when the preferred mode is non-axisymmetric. 
Generic theory predicts that the initial instability remains a Hopf bifurcation, and that 
it gives rise to a precessing pattern just as for large Prandtl numbers. How the low- 
Prandtl-number character of the modes manifests itself, and how the transition from 
radial oscillations to precessing oscillations takes place remain unanswered by such a 
theory. 

In the present paper we therefore examine the linear stability problem describing the 
onset of convection in a rotating cylinder for small Prandtl numbers. We study the 
problem both with stress-free boundary conditions at the top and bottom, and with 
no-slip boundary conditions. In the following we refer to these as the stress-free and 
rigid problems, respectively. The boundary conditions on the curved sidewall are 
no slip in both cases. For comparison with experiments we use fixed temperature 
boundary conditions at the top and bottom, and insulating ones on the sides. The 
problems are solved as in Goldstein et al. (1993). 

The paper is somewhat in the spirit of a related study of the onset of low-Prandtl- 
number convection in rotating spheres by Zhang & Busse (1987) in that we attempt to 
explain the various features of the linear stability problem as the Prandtl number 
decreases. However, because of the simpler geometry, we are able to provide a more 
detailed discussion, and as a result uncover behaviour that is more complex than in the 
problem studied by Zhang & Busse (1987). 

In $2 we briefly summarize the basic equations. In $ 3  we present the results for the 
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FIGURE 1. (a) The critical Rayleigh number R:O) and (b) the corresponding oscillation frequency w:') 
for axisymmetric modes as a function of the Prandtl number in a r = 1 cylinder. The rotation rate 
is specified by the square root of the Taylor number, F = 1000. The dashed lines correspond to 
steady modes (wfo) = 0) and are independent of c. The solid lines correspond to oscillatory modes. 
The correspondence between the frequencies and critical Rayleigh numbers is indicated by the letters 
a, b, . . . . The full spectrum of oscillatory modes is found by reflecting figure (b)  in the w = 0 axis. The 
points where the oscillation frequency vanishes are Takens-Bogdanov points. 

stress-free case, for which essentially exact solutions can be obtained. Consequently we 
have used this case to elucidate the complexity of the modal structure present at low 
Prandtl numbers. In 54 we explain a number of qualitative aspects of the results, 
emphasizing in particular the high multiplicity of modes with the same azimuthal 
wavenumber that exist for fixed values of the aspect ratio and the rotation rate at low 
Prandtl numbers. To understand the origin of such complexity we trace the Prandtl- 
number and Taylor-number dependence of the modes as well as their aspect-ratio 
dependence, emphasizing the fate of the wall modes as the Prandtl number decreases. 
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In 95 we present the corresponding results for the rigid case, and interpret the results 
on the basis of our experience with the stress-free case. These results, which focus on 
the critical Rayleigh numbers, precession frequencies and selected azimuthal 
wavenumbers are obtained for Prandtl numbers and aspect ratio for existing 
experiments on convection in liquid helium above the h point for which (T = 0.49 
(Lucas, Pfotenhauer & Donnelly 1983; Pfotenhauer, Lucas & Donnelly 1984; 
Pfotenhauer, Niemela & Donnelly 1987) and for dilute 3He-4He mixtures for which 
(T = 0.525 (Thurlow 1993). Some results for the Prandtl number ofmercury ((T = 0.025) 
and for proposed experiments on compressed carbon dioxide gas (r = 0.78) are also 
presented. Section 5 concludes with a comparison of the results with the experiments. 
A brief discussion follows in 96. 

2. The equations 
We consider Boussinesq convection in a vertical right circular cylinder of radius d 

and height h, filled with a pure fluid and rotating with constant and uniform angular 
velocity 52 about its axis. We denote by r its aspect ratio d/h. The linearized, non- 
dimensionalized equations of motion take the form (Chandrasekhar 1961) 

where u = uP+u#+wi is the velocity field, 0 and p are the departures of the 
temperature and pressure from their conduction profiles, and 2 is the unit vector in the 
vertical direction. The quantities F = 252h2/v, R = golATh3/~v, and (T = V / K  denote, 
respectively, the square root of the Taylor number, the Rayleigh number, and the 
Prandtl number. In these equations, length is in units of the layer thickness, h, and time 
is in units of the vertical thermal diffusion time, h 2 / K .  This non-dimensionalization is 
retained in order to connect the low-Prandtl-number results obtained here with those 
of Goldstein et al. (1993). In writing (1) we have assumed that the Froude number 
d@/g is sufficiently small that the buoyancy force continues to act in the vertical 
direction. 

In the following we use two types of boundary conditions. The boundary conditions 
for the problem we call stress free are 

and correspond to free-slip, impenetrable, infinitely conducting horizontal plates at top 
and bottom, and a rigid, impenetrable, insulating sidewall. Those for the rigid problem 
are 

u = u = w = O = O  on z = O , l ,  (6) 

u = v = w = ~ ~ ~ O = O  on r = T ,  (7) 

and correspond to rigid (i.e. no-slip) boundaries everywhere. In the following we refer 
to these as boundary conditions A and B, respectively. 

The conduction solution, u = 2; = w = 0 = 0, is stable to small perturbations below 
some critical value of the Rayleigh number, R,, which depends, in general, on the 
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aspect ratio, the Taylor number, and the Prandtl number, as well as the boundary 
conditions. Thus, if we write the time dependence of a solution to the linear problem 
as est, then Re (s) < 0 for all solutions when R < Re. At R = Re there is for the first time 
a neutrally stable solution to the linear problem, i.e. Re(s) = 0. If Im(s) = 0, the 
bifurcation is steady-state, and if Im(s) = we + 0, we have a Hopf bifurcation with 
Hopf frequency we. In the following we use the notation RLm) and w y )  to denote the 
values of R, and we for a mode with azimuthal wavenumber m. The resulting values of 
RLm) can be minimized with respect to m to determine the azimuthal wavenumber of 
the mode that sets in first. The resulting critical Rayleigh number and the corresponding 
frequency will be denoted by R, and w, with no superscript. As already mentioned the 
critical mode may be a body mode or a wall mode, depending on parameters. For 
moderate Prandtl numbers the distinction between these modes is unambiguous. We 
shall see below that for low Prandtl numbers this is no longer so. 

3. Results for the stress-free case 
We use the boundary conditions A to elucidate both the parameter dependence and 

multiplicity of the solutions to the linear stability problem. With these boundary 
conditions the stability problem is separable (e.g. O(r, 4, z ,  t )  = A(r)  eim$+i"t sin . nnz) ; all 
the results reported below are for the fundamental wavenumber n = 1 in the vertical. 
In order to relate the results to the moderate-Prandtl-number results of Goldstein 
et al. (1993) we choose r= 1 and 5 = 1000. We begin by describing the results for 
m = 0 corresponding to axisymmetric instability. Figure 1 (a)  shows RIP) as a function 
of IT. There are two types of curves. The dashed lines, showing the threshold Rayleigh 
number for steady modes, are Prandtl number independent. The solid curves indicate 
the onset of overstability. These curves extend from CT = 0 to a termination point on 
one of the dashed curves. This termination point is called the Takens-Bodganov point 
(hereafter TB point) and will be discussed in greater detail in $4 below. Note that when 
the overstable solutions exist they set in with a lower Rayleigh number than the 
corresponding steady state, as in other systems of this type (see, for example, Da Costa, 
Knobloch & Weiss 1981). Not all of the steady modes have TB points associated with 
them, however. Figure 1 (b) shows the corresponding frequencies as a function of CT. The 
various curves are labelled to indicate the correspondence. The oscillation frequency in 
all cases increases with the Prandtl number before decreasing again to zero at the TB 
point. Since the oscillations are axisymmetric the dispersion relation determining the 
frequencies is even in 0; consequently for each w > 0 shown there is a corresponding 
negative w as well, with the same critical Rayleigh number. The complete frequency 
spectrum is therefore obtained by reflecting figure 1 (b) in w = 0. In the following we 
refer to these modes as inertial oscillations since the restoring force is provided by the 
Coriolis force. 

Figure 2 shows the corresponding results for m = 1 modes. These modes break the 
axisymmetry of the system since they are no longer invariant under rotations, i.e. a 
rotation applied to an m = 1 solution yields a new and distinct solution as opposed to 
the same solution. The m = 1 modes break axisymmetry the least, however, and the 
results of figure 2 therefore bear some resemblance to those shown in figure 1. This is 
best seen in figure 2 (b), which shows how the frequency spectrum becomes asymmetric 
with respect to reflection in w = 0 as soon as the modes become non-axisymmetric. 
Specifically, there are now no modes with zero frequency. The steady modes present for 
m = 0 for Prandtl numbers above the TB point now connect smoothly with the positive 
frequency oscillatory modes for lower Prandtl numbers, while the steady modes 
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FIGURE 2. As for figure 1, but for m = 1 modes. All bifurcations are now oscillatory and produce 
precessing modes. The mode a is the wall mode of Goldstein et al. (1993). (c) A detail of (b) for lower 
frequencies. The modes are corotating when w,) < 0 and counter-rotating when w:) > 0. 
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present for Prandtl numbers smaller than the TB point connect with the negative 
frequency oscillatory modes. Thus the broken axisymmetry causes the steady modes 
for large Prandtl numbers to precess in the retrograde direction (w > 0) while those at 
small Prandtl numbers precess in the prograde direction (w < 0). As the Prandtl 
number decreases, the precession frequency of the retrograde mode increases slowly 
until the vicinity of the corresponding TB point where it begins to increase abruptly 
reaching values of the order of the corresponding m = 0 mode, before once again 
decreasing to zero. Similar behaviour occurs for the prograde modes with increasing 
Prandtl number. We refer to those modes that arise as perturbations of axisymmetric 
oscillations as inertial modes, with those arising as perturbations of steady modes 
referred to as convective modes. Note that as a function of the Prandtl number a mode 
can change from inertial to convective or vice versa. 

As a consequence of the relation of figure 2(b )  to figure 1 (b) it is a simple matter to 
pair up the different frequency curves in figure 2 (b) : b goes with m, d goes with k,  and 
fgoes with i, in the sense that they arise from the breakup of the same m = 0 modes. 
Additional m = 1 modes can be seen in figure 2(c). Notice, however, that there is a 
single positive frequency mode, labelled a, that has no counterpart with w < 0. This 
mode, unlike for example the modes d andf, has a substantial precession frequency for 
large Prandtl numbers, suggesting that it is a wall mode, in the terminology of Goldstein 
et al. (1993). Figure 3(a )  demonstrates that this is indeed so. The figure shows the 
vertical velocity eigenfunction at mid-level, w(r, 0, f), as a function of r for this mode. 
For non-axisymmetric modes this eigenfunction vanishes both at the origin and at the 
wall. For large Prandtl numbers the eigenfunction peaks near the wall, while the 
amplitude in the body of the container is small. This is in contrast to the slowly 
precessing modes d andfwhich fill the whole container but have a small amplitude near 
the wall. However, as the Prandtl number decreases, the structural difference between 
the two types of modes is gradually lost. 

Figure 3 ( a )  shows that the outer peak of the vertical velocity w(r, 0, !j) for mode a 
decreases while the inner one increases, so that by the time v = 0.4 mode a looks 
indistinguishable from mode b. The change in a is most abrupt near v = 0.62, where 
the frequency of a undergoes the fastest change (see figure 2b). This change in the 
character of the eigenfunction is quantified in figure 3 (b) which shows the ratio CL of the 
first minimum (near r = 0) to the second minimum (near r = r) as a function of v. This 
change of character should not come as a surprise since the wall mode is likely to be 
a convectively destabilized PoincarC mode of the rotating cylinder. This identification 
of the wall modes with Poincare modes is supported not only by their spatial structure 
but also by their absence in the axisymmetric case, and will be explored in detail 
elsewhere. The wall modes arc thus likely to be inertial modes as well, the main 
difference between these two types of inertial oscillation resting in the fact that the wall 
modes owe their existence to the sidewall while the low-Prandtl number oscillations do 
not. In the following we shall continue to refer to mode a as a wall mode, its change 
of character at small n notwithstanding. 

Figure 2 ( a )  shows the critical Rayleigh numbers corresponding to figure 2(b) .  
Observe that the transition from the ‘steady’ to the ‘oscillatory’ mode as a function 
of the Prandtl number is characteristically accompanied by a fold in the critical curve 
of the retrograde mode. Not all the mode interactions take this form, however. Some, 
specifically the interactions between c and I, e and j ,  and g and h, take a somewhat 
different form: here the reconnection still occurs as described above, but the fold is 
absent. An explanation of the qualitative aspects of these mode interactions can be 
found in 34. Note also that among the m = 1 modes the wall mode a is preferred for 
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FIGURE 3. (a) The eigenfunction w(r, 0, i) for the wall mode a for several values of the Prandtl number. 
The global minimum has been scaled to - 1 in all cases. (b)  The ratio a of the first minimum (near 
r = 0) to the second minimum (near r = r) as a function of the Prandtl number, showing the rapid 
change in the eigenfunction near F = 0.62. 

c > 0.25, but that for smaller c it is briefly superseded by the prograde k mode and 
then for 0.227 > c > 0.044 by the retrograde mode d. For yet smaller c the mode i has 
the least Rayleigh number, while for cr < 0.032fdominates. These results indicate how 
sensitive the mode selection process is to the exact value of the Prandtl number when 
it is small. In particular a mode preferred at low Prandtl number likefmay have a huge 
critical Rayleigh number by the time c has increased to 0.5. Thus the modes relevant 
at small Prandtl numbers may bear no resemblance to those at larger g. Notice also 
that there are some aspects of figure 2(a) that are not visible in figure 2(b). This is the 
sequence of mode pairings with decreasing Prandtl number: for g < 0.25 mode a pairs 
up with k, with d remaining unpaired, while for c < 0.044 d pairs up with i, with f 
unpaired. We discuss the origin of this behaviour in $4. 

Figure 1 reveals an interesting and important feature : axisymmetric oscillatory 
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FIGURE 4. As for figure 1, but showing the dependence of (a)  RP) and (b) UP) on 9 for the m = 0 
modes when u = 0.025, r = 1. The modes labelled a, b, c correspond to those shown in figure 1. Note 
in particular the connections between different steady-state modes via oscillatory modes and their 
manifestation in (b). 

convection appears to be possible for all (T < 1, although for the larger values of (T it 
may be preceded by a transition to a steady axisymmetric mode. In an unbounded layer 
with free boundaries at the top and bottom Chandrasekhar (1961) showed that 
oscillations disappear when > (2/3);. This limit is approached in the limit of large 
rotation rates and applies to rigid boundaries as well (Clune & Knobloch 1993). The 
difference between the bounded and unbounded problems appears at first sight to be 
surprising. However, the unbounded result is obtained by minimizing the critical 
Rayleigh number for the onset of overstability over all horizontal wavenumbers. In a 
finite container this procedure is not available : the horizontal structure is now fixed by 
the boundary. Indeed if one re-examines the theory for the unbounded layer, one finds 
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FIGURE 5. As for figure 4, but for m = 1 modes. All bifurcations are now oscillatory and produce 
precessing modes. (c) A detail of (b) showing the loops in modes d and a created from the ovals in 
figure 4(b). 
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that for a fixed wavenumber the maximum value of the Prandtl number at which 
oscillations can occur is once again unity. 

We now turn to the Taylor-number dependence of the above results, with a 
particular emphasis on the fate of the various types of modes as the rotation rate is 
reduced. We choose (T = 0.025, and present results as a function of the Taylor number 
F for both m = 0 and m = 1. The aspect ratio is kept at T = 1. 

We begin by showing the case m = 0 (see figure 4). For (T < 1 the Taylor number 
must exceed some minimum value that depends on (T (the TB point) before overstable 
axisymmetric modes become possible. There are two types of such TB points, those 
that give rise to oscillations whose frequency increases monotonically with F, and 
those that connect back to another TB point. Figure 4(a) shows that the former 
correspond to the oscillations one expects at larger rotation rates by analogy with the 
unbounded problem; these modes correspond to the modes a, b and c already shown 
in figure 1 .  The latter are associated with Hopf curves that connect different steady 
modes. Notice the deformation of the steady-state neutral curves in the vicinity of these 
connections. The behaviour seen here differs significantly from the unbounded system 
where exactly one TB point exists on each steady mode. As in figure 1 (b) the complete 
spectrum of oscillation frequencies is obtained by reflecting figure 4(b) in w = 0. When 
this is done the Hopf curves connecting steady-state neutral curves produce 
disconnected ovals. The deformation of @') for mode c seen in figure 4(b) suggests that 
these ovals are created by a pinching-off process as parameters are varied. This process 
allows a large-F oscillatory mode to change the steady-state mode on which it 
terminates, and leaves behind a short segment of oscillations connecting the two 
steady-state modes involved (cf. figure 4a). Figure 5 (a) shows the corresponding 
results for m = 1. The seven modes that are visible in figure 2(a) at (T = 0.025 are now 
at the right of the figure at F = 1000. The figure shows that for non-axisymmetric 
modes the rotation of the container splits the neutral stability curves for all the 
oscillatory m = 0 modes. This rotational splitting is expected on general grounds (cf. 
Knobloch 1992), and arises because prograde (w < 0) and retrograde (w > 0) modes no 
longer couple to the rotation in the same way. As a result one or other type of mode 
comes in first. In the present case the prograde mode always has the lower critical 
Rayleigh number at large F. The difference between the prograde and retrograde 
modes can also be seen in the asymmetry of the frequency spectrum with respect to 
reflection in w = 0 (figure 5b). Thus it is the rotational splitting of the modes a, b and 
c in figure 4(a) that is responsible for the modes (d, i), (a, k )  and (b, m) in figure 5(a), 
respectively. Figure 5 (a) reveals, however, the presence of an extra mode at larger F, 
labelledf. This mode does not originate through rotational splitting; it has no (nearly) 
symmetric counterpart in figure 5 (b) and its precession frequency decreases linearly to 
zero with decreasing F. It is also the preferred mode in the range of F shown. The 
existence of such a mode is in accord with general considerations (Ecke et al. 1992). 
Since this mode does not appear to have an axisymmetric counterpart we identify it as 
a wall mode of the rotating cylinder, in contrast to the other modes (d, i, a, k,  b, m) 
which are non-axisymmetric counterparts of the usual oscillatory modes. Note that this 
identification is supported both by the relatively high precession frequency of the mode 
(see figure 5 b), and by the fact that this precession is counter to the direction of rotation 
(w > 0). 

We discuss next the effect of non-axisymmetry on the transition between steady and 
oscillatory modes. Recall first that generically the bifurcation to a non-axisymmetric 
mode cannot be stationary. Consequently all the curves in figure 5(a) correspond to 
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Hopf bifurcations. This is clearly seen in figure 5(a) at small F where the neutral 
stability curves for steady-state bifurcations shown in figure 4(a) are seen to have 
unambiguous Hopf counterparts. In the following we characterize the modes as 
prograde or retrograde depending on whether w < 0 or w > 0 at large o. With 
increasing F one sees two types of interaction between the Hopf curves that arise from 
the steady and oscillatory neutral stability curves upon considering non-axisymmetric 
states. One type of interaction is organized around the TB points, and results in what 
we call ‘mode repulsion’, as in the interaction between modes (i,d) near T = 80, 
between modes (k ,  a) near F = 240 and between modes (m, b) near 9 = 450. Note that 
the interaction near T = 240 is of the same type as the other two, except for the fact 
that it is the mode k,  i.e. the prograde mode, that turns around, and not the retrograde 
mode. This type of interaction comes about because of the rotational splitting of the 
Hopf curves for non-axisymmetric modes, and will be discussed in more detail in 54. 
The other type of interaction comes about through the rotational splitting of the Hopf 
curves connecting the steady-state neutral curves in the axisymmetric case, and results 
in either crossing or an avoided crossing of the corresponding non-axisymmetric Hopf 
curves. Examples of the former are found near 9 = 255, and of the latter near 
F = 154 (see figure 5a). Both interactions are of the same type except for the fact that 
in the latter case the interaction takes place between two retrograde modes (modes a 
and d both precess counter to the direction of rotation at large F), while in the former 
it takes place between a retrograde mode (mode a)  and a prograde one (mode m). 

Figure 5 (b) shows the corresponding precession frequencies as a function of 9, with 
a blow up shown in figure 5(c). Observe first that, with the exception of the inertial 
m o d e 5  all the modes change their direction of precession as a function of F. 
Consequently it is possible for a non-axisymmetric mode to be stationary (cf. 
Bestehorn et al. 1992), although the situation is non-generic in the sense that a small 
change in parameters will make the mode precess again. Observe next that the seven 
TB points depicted in figure 4(b) break up in a characteristic fashion when m = 1 .  As 
already mentioned, the frequency spectrum loses its symmetry about w = 0, and the 
frequencies of the prograde and retrograde modes disconnect (see the interaction 
between the modes (i,d), @,a) and (m,b)), exhibiting the mode repulsion already 
observed in figure 5 (a). The detail shown in figure 5 (c) shows why the (k ,  a) interaction 
at F = 240 differs from those at 9 = 80 and 450; the modes a and k are turned by 
their repulsion in opposite directions from those of the corresponding modes in the 
other two interactions. The ‘generic’ situation is illustrated by the (m, b) interaction in 
which m and b connect to w = 0 as F +- 0, co, respectively. In contrast the modes (i, d) 
both ultimately connect to o = 0 as 9 + 0, while (k ,  a) connect to o = 0 as 9 + 00. 
There are thus a number of modes that are not connected to F = 0, i.e. these modes 
have no counterpart in the non-rotating system. In order for this to be possible one 
or other of the interacting modes must turn around, and this process involves the 
appearance of the prominent loops in figure 5(c). These loops arise from the 
reconnection of the ovals in figure 4(b) to the oscillations arising from the steady state 
in figure 4, the loop in d coming from the first oval in figure 4(b), while that in a comes 
from the second one. For example, the avoided crossing near Y = 154 (see figure 5a) 
comes about through the repulsion of the modes d and a. It is this interaction that 
deflects a back towards larger 9 and d towards smaller T, and hence is responsible 
for the behaviour of the modes (i, d) as F + 0 and of (k,  a) as F + 00. In this process 
a undergoes a further interaction, this time with the mode m, but without an overall 
change in direction; this is accomplished by means of the loop to the right of the 
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interaction point (F = 255), and results in the mode crossing seen at the corresponding 
point in figure 5(a). The overall effect of these interactions is to prevent mode a, the 
large-Prandtl-number wall mode, from reaching F = 0 as befits a mode tentatively 
identified as an inertial mode. But the manner in which a is turned around is 
remarkably complex, involving a high multiplicity of modes near particular values of 
the rotation rate. 

The results presented above for fixed 5 and variable CT are related to those for fixed 
CT and variable F. For example, the turning point in mode d near F = 80 when 
CT = 0.025 comes about when a loop of the form of that labelled 1 in figure 2(c) first 
cuts the line CT = 0.025. This first occurs as F increases through 5 = 80. Thus, 
increasing F is equivalent to decreasing CT and much of the structure seen in figures 
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FIGURE 7. As for figure 5,  but for u = 0.49. (c) A detail of (b). 
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2 (b) and 5 (b) can be related this way. In particular the (i, d) mode interaction moves 
to lower a as F decreases, while at fixed F increasing cr results in a loss of modes two 
at a time. 

We may summarize the behaviour shown in figure 5 as follows. Recall that at 
F = 1000 (see figure 2) modesfand i arise from the breakup of a pair of m = 0 modes, 
and so do d and k,  and b and m. With decreasing F the pairing shifts. The modef 
becomes unpaired while the remaining modes pair up, d with i, and a with k .  As a 
consequence the unpaired mode a exchanges its role with the modef. This mode is a 
steady m = 1 mode of the non-rotating cylinder; when the cylinder begins to rotate the 
mode begins to precess as described by Ecke et al. (1992). It is of interest that the rate 
of precession of this mode is soon similar to that of, for example, the modes d and i, 
which are created in the splitting of a pair of oscillatory m = 0 modes. 

It is interesting to compare the above results for a = 0.025 with those for an 
intermediate value of the Prandtl number: v = 0.49. This case is perhaps the most 
complicated of all. As before we begin with the m = 0 modes and show in figure 6 the 
critical Rayleigh numbers and oscillation frequencies of the low-lying modes. The 
number of oscillatory modes connecting the steady modes is now much larger, and 
there may be several connections between the same steady states (see figure 6a). In 
addition the large-9 oscillatory modes terminate on the steady-state modes with a 
pronounced fold. We have checked that these folds develop continuously from the 
situation depicted in figure 4(a) as the Prandtl number is raised. In consequence the 
frequencies uIp) also develop folds, and these form through a reconnection between the 
ovals shown in figure 4(b) and the Hopf curves extending to large 5. Of course other 
mode interactions create new segments of Hopf curves, responsible for the new ovals 
in figure 6(b). Figure 7 shows the corresponding results for m = 1 modes. This figure 
exhibits similar phenomena to those discussed in connection with figure 5(b, c), except 
that the modal structure is yet more complex. The typical mode interaction now results 
in mode crossing (see figure 7a). The new mode this time is the one that appears to pass 
directly through a number of these mode crossings. This mode connects smoothly to 
zero rotation rate (figure 7h) and is the preferred mode from among the m = 1 modes 
for 9 < 126. Mode a, the wall mode at large Prandtl numbers, is preferred for 
F > 4 6 0  and is now also connected to 9 = 0, in contrast to the situation for 
cr = 0.025. It follows that somewhere in 0.025 < a < 0.49 mode a must cease to be 
connected to F = 0. How this takes place remains unclear. Figure 7 (c) shows a detail 
of some of the large number of cusps and loops that some of the modes go through in 
the process of turning around to large 9. 

We examine, finally, in figures 8 and 9 the behaviour of the modes with increasing 
aspect ratio r f o r  a = 0.49 and F = 1000. Figure 8(a) shows the results for the m = 0 
modes. The steady-state curves, denoted by dashed lines, exhibit oscillations that are 
associated with the addition of new radial nodes to the eigenfunctions as the aspect 
ratio increases. As expected, these curves decrease towards the critical Rayleigh 
number for an unbounded layer as 1" increases. The solid curves are the Hopf curves 
and as before they are of two types. First there are the short segments connecting the 
various steady curves via TB points. In the non-rotating cylinder such Hopf curves are 
absent since the eigenvalues must be real (cf. Jones & Moore 1979). In addition there 
are Hopf curves corresponding to the oscillations that are expected because of the low 
Prandtl number of the fluid. These curves extend to large aspect ratios, but the 
corresponding critical Rayleigh numbers increase rapidly with I-. Consequently for 
large r each oscillatory mode is preceded by the corresponding steady-state mode. 
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FIGURE 8. (a) R$ and (h) 0:) as functions of the aspect ratio r for m = 0 modes 
with n = 0.49 and 9 = 1000. 

With decreasing r the Hopf curves all terminate on steady-state curves in TB points. 
This is not surprising since as r decreases, the influence of the no-slip sidewall 
increases, and the boundary conditions there oppose the flow reversal that occurs 
during each oscillation. In consequence as r increases, the oscillation frequencies also 
increase. Note that the behaviour near the TB points varies with the aspect ratio, the 
Hopf curves developing a fold as rincreases. Note also that for r < 0.3 the first mode 
to set in is a steady-state one, and that there is one additional brief interval of r where 
this occurs. For most aspect ratios, however, the onset of axisymmetric instability is via 
overstability. As expected, the envelope of the Hopf curves converges with increasing 
r to the critical Rayleigh number for oscillatory convection in an unbounded layer; 
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FIGURE 9. As for figure 8 but for m = 1. 

since cr < (2/3); this value is less than the corresponding value for steady-state 
instability. 

In figure 9 we show the corresponding results for m = 1. As in the earlier cases we 
see here the effect of rotational splitting of the m = 1 modes, particularly in the short 
Hopf curves connecting two steady-state m = 0 curves. The rotational splitting results 
in either mode avoidance or mode crossing, with the latter typical for the higher modes. 
We also see the rotational splitting for the other Hopf curves arising from TB 
bifurcations. The most prominent feature of figure 9 (a) is the presence of the low-lying 
Hopf curve once again apparently without a partner (see figure 9b). This curve 
connects smoothly to a curve that at small aspect ratios behaves like a steady-state 
curve. For r < O( 1) this curve reduces significantly the critical Rayleigh number, and 
inspection of the other figures identifies it as the wall mode a. We see that with 
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FIGURE 10. (a) R2m) and (b) wLm) as functions of the dimensionless rotation rate Q for a number of 
values of rn, and stress-free boundary conditions at top and bottom. The parameters are rr = 0.49, 
r = 1.97. The jumps in (b) for m = 1 and rn = 2 correspond to transitions between dzyerent rn = 1 
and rn = 2 modes, respectively. (c) Same as (b) but for smaller rotation rates. 

increasing aspect ratio this mode is superseded by other m = 1 modes, first by the fifth 
lowest mode in figure 7(a) ,  and then by others. For larger aspect ratios the critical 
Rayleigh numbers for the first unstable m = 0 and the first unstable m = 1 modes are 
nearly the same. In both cases the unstable modes are inertial. 

It is worth remarking that for (T = 0.49 the m = 0 Hopf modes behave with 
increasing r like the non-axisymmetric wall modes discussed in Goldstein et al. (1993), 
while the steady m = 0 modes behave like the body modes. These two classes remain 
visible in the m = 1 results, and should be compared with the corresponding ones for 
(T = 7.0. Figures 8 and 9 also provide a clue as to the manner in which the short Hopf 
segments disappear with decreasing T. The TB points with which the inertial 
oscillations terminate in figure 8(a)  move towards larger r with decreasing F and in 
so doing reconnect with the nearest Hopf segment. This detaches the Hopf curve from 
the lowest steady-state curve and reattaches it to the next one. In this way the Hopf 
segments are ' swept' outwards towards larger r by the retreating inertial oscillations. 

In figure 10 we show the results for (T = 0.49 and stress-free boundary conditions at 
top and bottom as a function of the rotation rate 52 for a = 1.97 cylinder. The results 
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given below should be compared with those for r = 1, as well as with those for the 
boundary conditions B described in $5. In order to facilitate the latter comparison we 
present in figure 10(a) only the lowest value of RLm) from each value of m, thereby 
eliminating the multiplicity of modes with the same azimuthal wavenumber. As a 
consequence of this the critical Rayleigh number curves exhibit cusps near certain 
rotation rates, where different modes with the same m cross. Figure 10(b) gives the 
corresponding precession frequencies, while figure 10 (c) gives more detailed in- 
formation at low rotation rates. The mode crossing responsible for the cusps in figure 
10(a) is reflected in the frequency jumps seen in figure 10(b, c). At CT = 0.49 this 
competition between different modes with the same azimuthal wavenumber occurs 
only for m = 1 and m = 2. For small rotation rates the lowest-lying m = 1 and m = 2 
modes have substantially smaller precession frequencies than at larger rotation rates. 
This drop in the rotation frequency is related to the fact that at r = 0.49 the 
axisymmetric mode oscillates only for D 2 51; for lower D this mode is steady. 
However, the corresponding m = 1 and m = 2 modes cannot be steady since they break 
axisymmetry. Consequently these modes do precess, albeit slowly. Note that the m = 0 
mode is in fact preferred for 52 < 4. 

4. Interpretation of the results 
We now turn to the interpretation of the results presented in the preceding section. 

We consider first the near collisions among the various modes, and then discuss the 
limit CT +. 0. 

4.1. Mode collisions 
In this subsection we discuss the qualitative behaviour revealed by the Prandtl- and 
Taylor-number dependence of the critical modes, particularly of their frequencies (see 
figure 2b). In $ 3  we pointed to several examples of mode interactions or near collisions 
that came about when the axisymmetry of the mode was broken. In this section we 
discuss the qualitative behaviour near such collisions and point out that it has a simple 
explanation. As suggested in $3 it is related to the proximity to the so-called 
Takens-Bogdanov bifurcation that characterizes the transition from steady to 
oscillatory convection for axisymmetric (rn = 0) modes. The TB bifurcation is a 
codimension-two bifurcation that arises when the Hopf frequency vanishes. 
Consequently the bifurcation is characterized by a double zero eigenvalue. At the TB 
bifurcation of an m = 0 mode we may write any field $o(r, 4, z) in the form 

$ r J k  4, 4 = uofo(r, 4 + . . . , (8) 

where the dots denote nonlinear terms, and the real amplitude u, satisfies 

(?) = (; i)(;;)+... (9) 

These expressions hold regardless of whether the system rotates or not. An m + 0 mode 
breaks the circular symmetry of the container, however, and (8) is modified. In a non- 
rotating cylinder one must now write 

$&, 4, z )  = Re {umfm(r, z) ei"3 + . . . , 
where (5) = (; i)(;;)+ ... . 
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Since (urn, urn) are now complex, the multiplicity of the zero eigenvalue has doubled. 
Away from the bifurcation the evolution of the amplitudes is described, without loss 
of generality, by 

(::) = (: #)+... , 

where (a, p) are the unfolding parameters. When the system is non-rotating, these 
parameters are forced to be real by the reflection symmetry q5 + - q5 (Dangelmayr & 
Knobloch 1987). When the system rotates this reflection symmetry is absent, however, 
and the unfolding parameters become complex. Without loss of generality we now 
have 

a+iQy p+iQS )(urn)+ v, ..., 

where a, p, y and S are all real functions of Q2. With the nonlinear terms (. . .) omitted 
(13) provides a complete description of the effects on the linear problem near a TB 
bifurcation of both rotation and departure from axisymmetry. By construction the 
equations require the presence of a TB bifurcation when the imaginary terms are 
absent. This can occur in one of two ways. Either there is a TB bifurcation to a non- 
axisymmetric mode in the non-rotating system, in which case (13) describes the effect 
of rotation on the bifurcation, or there is a TB bifurcation for an rn = 0 mode in the 
rotating system, and (13) describes the effect of small departures from axisymmetry. In 
the former case rn = O(1) and Q is small; in the latter it is the other way around. In the 
rotating convection problem the former possibility does not arise and we must 
therefore take y, S to be both O(rn), rn < 1. Of course the geometry of the container 
prevents us from considering the small values of rn for which the above derivation 
holds. Nonetheless, the resulting equation accounts for much of the behaviour seen for 
rn = 1 in figure 2b. 

To analyse the resulting linear problem we look for solutions growing as e". The 
growth rate s satisfies the equation 

s2--~+iQS)s-(a+iQy) = 0. (14) 

w2-QSZSw+a = 0, pw+ay = 0, (1 5 )  

The neutral stability condition Res = 0 then yields the two relations 

where w = Ims. In the following we consider two cases. In the first the TB point is 
chosen as the point (RTB(Q), aT,(Q)), so that 

a = a(s2)(R-R,,)+b(Q)(a-a,,), p = c(Q)(R-RT,)+d(Q)(a-~,,). (16) 

In the second case r is the parameter and the TB point is (RTB(a), QTB(a)). Here 

a = a(~)(R-R,,)+b(a)(Q--,,), p = C(a)(R-R,,)+d(a)(Q--,,). (17) 

To obtain results relevant to figure 2(b) we take a as the distinguished bifurcation 
parameter and eliminate the R-dependence from (1 5 )  and (1 6) : 

[w2+d(r-CT,,)]w-QSw2-(a/c)Qy = 0. (18) 

Here d = -(ad-bc)/c > 0,  so that w 2  > 0 in a-aTB < 0, as in figure 1 (b). Equation 
(18) will be recognized as a particular case of the universal unfolding of the pitchfork 
bifurcation (Golubitsky & Schaeffer 1984) : 

w 3 + p w + 7 w 2 + v  = 0, (19) 
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FIGURE 11. The universal unfolding (19) of the pitchfork bifurcation in the (v, v)-plane. The unfolding 
describes qualitatively the generation of precession (w + 0) arising from the loss of axisymmetry of 
the pattern near a Takens-Bodganov point. 

with / A  = 4 g -  @TB), (20) 

7 = -526, (21) 

v = -(a/c)Qy. (22) 

In particular, when m = 0 equation (18) reduces to the branching equation for the 
pitchfork bifurcation. Figure 11 shows how the pitchfork breaks up as a function of 
7 and v, and illustrates how the pitchfork produced by the coalescence of a pair of 
complex-conjugate eigenvalues of a real dispersion relation is deformed into the 
equivalent of an imperfect bifurcation once the dispersion relation acquires a small 
imaginary part. A similar observation has already been made by Soward (1979). The 
above discussion makes quite clear the relation between the lack of axisymmetry, and 
the presence of complex eigenvalues that, because of the broken symmetry, are no 
longer exact conjugates of one another. 

In the present example the parameters 7, v are not independent, however, and 
increasing m corresponding to traversing the figure along the line v = (a /c)  (y /6 )  7. As 
the parameter 52 varies so does the slope (a /c)  (y/S) of this line, and consequently the 
nature of the breakup of the pitchfork. Observe, however, that unless the slope is very 
small, the breakup will take the form of an ‘imperfect’ transition. In some cases, e.g. 
for an unbounded layer with free boundaries at top and bottom, the ratio a / c  is simple 
to calculate (Guckenheimer & Knobloch 1983). In the present case we do not compute 
this ratio, but instead interpret our results in the light of the above analysis. A glance 
at figure 2(c) reveals that the ‘imperfect’ transition occurs only for mode interactions 
for which vTB is small, e.g. for c and 1, or e andj .  On the other hand when gTB 

becomes larger (i.e. the radial wavenumber becomes smaller) a ‘hysteretic’ transition 
is favoured (see e.g. modes b and m in figure 2b). In terms of figure 11 this behaviour 
has a simple explanation if a /c  decreases rapidly with decreasing radial wavenumber 
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of the pattern. The results in the (R, Q)-plane are similar. By analogy with the 
unbounded case for which a /c  = cr( 1 + 2g) / (  1 + v), we expect for similar wavenumber 
modes a low Prandtl number to favour a ‘hysteretic’ transition in this plane. However, 
as in the (R, v) analysis, it is the radial structure that appears to be responsible for the 
observed transitions, and the dominant transitions are ‘imperfect ’. 

It remains to consider the nature of the near collisions in the (R, v)- and (R, Q)- 
planes. In this case we eliminate w from (15)  and obtain the equation 

(23) apz + Q2y(y + PS) = 0. 

Thus when m = 0 the interaction consists of the line a = 0 and the half-line p = 0, 
a < 0, the latter doubled. In figure 1 (a)  a = 0 is a dashed line while p = 0 is the solid 
half-line that connects to it. When m + 0 these lines deform. Near a = 0, one now has 

= - ( I / & )  7 [y  + dS(C- a,,)] (g- ~ T B ) - ~ .  (24) 

Hence for v- vTB % 1 ,  a > 0 when dyS < 0 but a < 0 when dyS > 0. The opposite is 
the case for v = gTB 4 - 1 .  Note that b = 0 (since the threshold for the steady-state 
instability is independent of v) and a > 0 (so that a < 0 when R- R,, < 0, as in figure 
2a). Close to v = vTB, however, a < 0 and both segments of the curve fall below zero. 
It follows that the critical-Rayleigh-number curve crosses a = 0 in G- > vTB if dyS < 0, 
or in g < S,, if dyS > 0. These conditions also follow from (23). Similarly the line 
/3 = 0 now becomes 

p = fQy[-A(v-v,,)]-i, lcT-vT,l % 1.  (25) 

Since a < 0 along /3 = 0, we must have A > 0 (see figure 1 a). It follows that for 
v- vTB 4 - 1 the double half-line splits into two lines, lying on opposite sides of the 
original double half-line (see figure 2a). 

It remains to discuss the possibility of the prominent folds in the critical-Rayleigh- 
number curves. The formation of these requires the existence of an inflexion point, i.e. 
a real solution to the conditions dv/dR = d2g/dR2 = 0. A straightforward calculation 
using (23) shows that such a solution exists if and only if dyS < 0. Thus the ‘hysteresis ’ 
transition is associated with the crossing of a = 0 in g > g,,, as in figure 2(a). Note, 
however, that the condition /3 = 0 cannot be satisfied so that the critical curves cannot 
cross the line p = 0. In this respect the theory based on assuming that rn 4 1 fails when 
it comes to understanding the observed interaction between, for example, modes d and 
k. No doubt this is because in these cases the curve p = 0 acquires a negative slope near 
a = 0 (cf. figure 1 a ) ;  consequently a more complete analysis must focus on the 
unfolding of a degenerate pitchfork. In other respects, however, the above analysis 
provides a good qualitative understanding of the parameter dependence of the non- 
axisymmetric modes. 

It is a simple matter to adapt the above analysis to describe the interactions observed 
in the (Rc, Q)- and (wc, Q)-planes. When m = 0 the modes d and i, a and k,  and b and 
m are linked pairwise by their coalescence at their respective Q,,. In this way the 
‘avoided’ crossings involving modes d and i, and b and rn in figures 5(a)  and 5(b) can 
readily be understood as ‘imperfect’ transitions caused by breaking the axisymmetry 
of oscillatory m = 0 modes. On the other hand the complete interaction between modes 
a and k and in particular the appearance of the loops involves the modes d and rn and 
so cannot be understood by unfolding a single TB bifurcation. Such loops only occur 
in the unfolding of a double TB bifurcation formed by bringing together the two TB 
bifurcations at either end of one of the short segments of oscillatory modes seen in 
figure 4. 
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4.2. The zero-Prandtl-number limit 
In order to assist in the interpretation of the small-Prandtl-number results we examined 
the zero-Prandtl-number limit of equations (1) and (2). As pointed out by Thual(l992) 
there are several ways of taking this limit. This is because the Prandtl number can be 
small either because the viscosity is small or because the thermal diffusivity is large. In 
the former case the motion is dominated by the constraint arising from the 
Taylor-Proudman theorem. This is the limit that is of interest in geophysical 
applications, and corresponds to very large Taylor numbers. In the laboratory 
experiments discussed in 5 5 the Taylor numbers do not reach high values, however, and 
the more appropriate limit is that obtained by assuming that F remains of order one. 
In this case the zero-Prandtl-number limit corresponds to large thermal diffusivity (cf. 
Thual 1992). The resulting critical Rayleigh number will be of order one, though the 
temperature difference required to drive convection will have to be large. The correct 
scaling is to scale u with v and the time with v-’, while the temperature fluctuation 0 
scales with v. This procedure implies that the relevant timescale of motion is now the 
viscous timescale, the thermal timescale being so short that temperature fluctuations 
equilibrate essentially instantaneously. Consequently the allowed temperature fluc- 
tuation is very small. In the limit the resulting linear equations are 

It follows that the precession velocity of non-axisymmetric patterns will be O(v) in the 
scaling leading to equations (1) and (2), or O( 1) in the above scaling. In dimensional 
terms the frequency is O(v/h2).  This scaling is the appropriate one if one is interested 
in precessing patterns in slowly rotating containers in the limit of small Prandtl 
numbers. We have verified that the solutions to (26)-(28) are very close (i.e. O(n) close) 
to those of (1)-(3) with n = 0.025 for slow rotation rates, the error increasing typically 
linearly with the rotation rate. This behaviour is expected from the scaling leading to 

The ‘other’ low-Prandtl-number limit corresponds in the scaling of (1)-(3) to the 
large rotation limit. In this limit the dimensional precession frequency of O(2D), where 
D is the dimensional rotation rate of the cylinder. In the scaling of (1)-(3) one expects 
the dimensionless frequencies to scale as nF. It is easy therefore to pick out from 
figures 4-7 those modes that persist in this limit. Note that if this limit is implemented 
along the lines of Soward (1977), the slowly precessing modes that arise from non- 
axisymmetric perturbations of the steady modes (cf. figures 5b, c and 7b ,  c) are 
eliminated. As already mentioned these modes have critical Rayleigh numbers 
substantially higher than the inertial modes so that the scaling appropriate to this limit 
does indeed focus on the relevant modes. 

(26)-( 28). 

5. Results for rigid boundaries 
We now present results for boundary conditions B and several values of the Prandtl 

number that are of immediate experimental interest. These results are not as complete 
as those for the stress-free boundaries largely because of the increased cost of the 
computation. The method of solution used is described by Goldstein et al. (1993). The 
results presented below are correct to 1 % in the Rayleigh number and 2% in the 
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FIGURE 12. (a) Comparison of R, for rigid and stress-free boundary conditions and c = 0.49, 
r = 1.97, including the corresponding results for an unbounded layer. (b)  R:m) for rigid boundary 
conditions and u = 0.49, r = 1.97. 

precession frequency, and focus on the smaller aspect ratios for which experiments 
have been done. The results are presented as a function of the dimensionless rotation 
rate 52 = &/T. 

5.1. Liquid 4He 
The calculations reported below are motivated by the experiments of Lucas et al. 
(1983) and Pfotenhauer et al. (1984, 1987) on liquid 4He above the h point. The range 
of Prandtl numbers covered was 0.49 < u < 0.76, with the results for u = 0.49 being 
the most detailed. The experiments were carried out for several aspect ratios, of which 
the smallest is r = 1.97. We begin therefore by presenting results for u = 0.49 and 

In figure 12(a) we compare the critical Rayleigh numbers R, for rigid and stress-free 
boundaries as a function of the dimensionless rotation rate 52. The corresponding 
results for an unbounded layer have also been included. For the cylindrical container 
the difference between the results for the two types of boundary conditions essentially 
vanishes for 52 > 200, much as for u = 6.8 (Goldstein et al. 1993). This is not so for the 
unbounded layer. In both cases for sufficiently large rotation rates the rigid boundaries 
produce a lower critical Rayleigh number (cf. Chandrasekhar 1961). Note also that for 
both boundary conditions the critical Rayleigh number for the cylinder falls below that 
for the layer at large enough rotation rates. This is the origin of the so-called subcritical 
convection, observed for example by Lucas et al. (1983). Figure 12(b) shows the 
corresponding Rayleigh numbers R:") for the rigid case from which figure 12(a) is 
constructed. 

In figure 13(a) we look at these results in more detail by exhibiting the precession 
frequency as a function of and labelling the preferred azimuthal wavenumbers. The 
figure distinguishes clearly between the rapidly precessing wall modes for 0 > 27 (rigid 
case) or SZ > 7.5 (stress-free case). Figure 13(b, c) shows successive enlargements of 
figure 13(a) at small 52. Of particular interest is figure 13(c) which shows that for 
14 < 52 < 27 the preferred mode in the rigid case is the non-precessing m = 0 mode. 
For yet smaller 52 the preferred modes are the slowly precessing body modes with 
rn = 1 or 2. 

In figure 14 we draw attention to the oscillations in the precession rate of the body 
modes as a function of rotation for low to moderate rotation rates. Similar oscillations 

r = 1.97. 
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FIGURE 13. Comparison of 0,. for rigid (-) and stress-free (----) boundary conditions and 
cr = 0.49, = 1.97 showing the preferred wavenumbers: (a-c) differ in the range of rotation rates 
shown. 
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FIGURE 14. Precession frequencies 0:") for m = 1,2,3 for rigid boundary conditions and r = 1.91, 

CT = 0.49 showing oscillatory behaviour with increasing rotation rate 52. 
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FIGURE 15. The eigenfunction for (a )  m = 2 at 52 = 14 and (b) m = 5 at 52 = 27 for rigid boundary 
conditions and r = 0.49, r= 1.97. The critical Rayleigh numbers are (a)  RY) = 2193 and (b) 
R f )  = 2974. The mode (a)  is a body mode while mode (b) is a wall mode. 

can be seen in figure 1O(c) for stress-free boundaries, and in more detail in figure 7(c). 
These oscillations are not visible in figure 13(c) because the body modes are soon 
superseded by other body modes and then by the wall modes. Note that the prograde 
modes do not appear in figures 1O(c) and 14 because their critical Rayleigh number is 
higher than that for the retrograde modes shown. 

Typical eigenfunctions, representing the mid-level temperature fluctuation, are 
shown in figure 15. In figure 15(a) we show a body mode with rn = 2 at 52 = 14; figure 
15(b) shows a wall mode with m = 5 at 52 = 27. These modes are the first to set in as 
the Rayleigh number increases at the given rotation rates. Note that for rigid 
boundaries the situation resembles that for free boundaries at somewhat higher Prandtl 
numbers. This is to be expected since rigid boundaries decrease the maximum Prandtl 
number at which a particular axisymmetric mode will oscillate, for a given rotation rate. 
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FIGURE 16. (a) The critical Rayleigh number R, for rigid boundaries and = 0.525, r = 2.8 as a 
function of the rotation rate. (b, c )  The corresponding precession frequencies w, on different scales 
for 52. 

In figure 16 we present results for v = 0.525 and T = 2.8. We find that the mode 
m = 1 is preferred for 0 < D < 15, followed by m = 2 in 15 < D < 18, m = 0 in 
18 < Q < 30, m = 1 in 30 < D < 31, witha transition to afast m = 8 modeat 52 = 31. 

5.2. Mercury 
Extensive experiments on convection in mercury (CT = 0.025) have been reported by 
Rossby (1969). These were performed in a relatively large aspect ratio container (the 
aspect ratio is not specified) and typically at large rotation rates. We have computed 
R, and the corresponding Hopf frequency o, for this case as functions of the rotation 
rate for a T =  1 container (figure 17). With rigid boundaries the mode m = 0 is 
preferred in the interval 0 < 52 < 16 and is then steady; in the interval 16 d 52 d 681 
the preferred mode is m = 2, with m = 3 preferred for yet larger rotation rates. The 
oscillatory m = 0 modes are always preceded by other modes. In contrast, with the 
boundary conditions A the mode that first sets in is m = 1 in the interval 0 < D < 345, 
followed by m = 2 in 346 < 52 < 910 and m = 3 for higher D (see figure 17b). 
Consequently, the detailed study of the various competing m = 1 modes carried out in 
$3 is relevant for a substantial range of rotation rates. For Prandtl numbers this low 

11-2 
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FIGURE 17. Comparison of (a) R, and (b) o, between rigid (-) and stress-free (----) boundary 
conditions for u = 0.025, r = 1 .O. 
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FIGURE 18. As for figure 17, but with CT = 0.78, r= 2.8. 

the critical Rayleigh numbers for the rigid and stress-free boundary conditions 
continue to differ significantly for all 0 < SZ < lo3 in contrast to the situation at higher 
Prandtl numbers (cf. figure 12a; see also Goldstein et al. 1993). This is consistent with 
the difference between the two varying as (cry)-;, the result for an unbounded layer 
(Clune & Knobloch 1993). 

5.3. Compressed CO, gas 
Detailed experiments on convection in compressed CO, gas have been performed 
recently by G. Ahlers and coworkers (Y. Hu, R. Ecke & G. Ahlers, unpublished). In 
this system the Prandtl number can be varied by changing the pressure in the cell. 
Existing experiments have been carried out for a = 0.80. Although this Prandtl 
number is too large for overstability, our results are of immediate relevance not only 
to the compressed gas experiments but also to liquid helium experiments at the upper 
end of the accessible Prandtl numbers (a = 0.76). We use the latter experiment as 
motivation for choosing a = 0.78 and T = 2.8. The results are summarized in figure 18. 
These are similar to both the higher-Prandtl-number results discussed by Goldstein 
et al. (1993) and the a = 0.525 results presented above. For the boundary conditions B 
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one first finds an m = 1 mode, followed at 52 = 15 by m = 2. This mode is superseded 
by an m = 0 mode at 52 = 18. The m = 1 mode comes in at D = 30 followed by a jump 
to a fast m = 8 mode at 52 = 33. At 52 = 44 this is superseded by m = 9 with jumps to 
m = 10, ..., 13 taking place at D = 90, 200, 450 and 990, respectively. 

5.4. Comparison with experiments 
Most low-Prandtl-number experiments are cryogenic, and hence suffer from the 
disadvantage that the flow cannot be visualized. Consequently the onset of instability 
is determined only through integrated measurements such as Nusselt-number 
measurements. Such measurement cannot, however, distinguish between a steadily 
precessing pattern or a steady one, since the Nusselt number is constant in both cases. 
In particular, existing experiments do not provide information about either the 
precession frequencies or the mode numbers. Consequently the scope for detailed 
comparison to experiments is more limited than for moderate-Prandtl-number 
experiments. Nonetheless, in order to facilitate such a comparison both to currently 
available and future data the results presented in $3 5.1-5.3 emphasize calculations with 
experimental boundary conditions. We have focused on the case c = 0.49, r = 1.97 for 
which the currently available data are most complete (Pfotenhauer et af. 1987). We 
have not presented results for the larger aspect ratios investigated by Pfotenhauer et al. 
(1984) because the number of modes close to critical becomes large, and the weakly 
nonlinear problem is then unlikely to be dominated by a single linear theory mode. We 
have also focused on the case CT = 0.525, r= 2.8 because of recent experiments on 
normal binary 3He-4He mixtures reported by Thurlow (1993). At the highest 
temperature at which these experiments were carried out this system corresponds fairly 
closely to a pure 4He fluid with c near 0.525. The critical-Rayleigh-number data reveal 
a prominent cusp at 52 = 355 while our calculations reveal cusps near 52 = 250 and 
52 = 520 associated, respectively, with the transition from m = 10 to m = 11 and 
m = 11 to m = 12. Whether the presence of such cusps can be used to identify the 
azimuthal wavenumbers of the unstable modes in the experiment remains unclear. 
Evidently local probes, as used in the recent experiments of Zhong et al. (1991, 1993), 
would provide an invaluable diagnostic tool. 

The experiments of Pfotenhauer et nl. (1984, 1987) reveal that for sufficiently large 
rotation the critical Rayleigh number R,(R) falls below that for an unbounded layer, 
hereafter R,(Q). This ‘ subcritical’ convection is characterized by lower heat transport 
efficiency, as revealed by the Nusselt-number measurements, than the convection for 
R > R,(D). Consequently, the Nusselt-number curves N(R) exhibit an unambiguous 
break at about R,(Q), beyond which the slope dN/dR becomes significantly larger 
than for R < R,(Q). For example, for r= 7.81 and = 0.49 the break is present 
whenever 52 > 140. These observations are consistent with our prediction that for 
sufficiently large rotation rates, D > 26 for r = 1.97, c = 0.49, the instability will take 
the form of wall modes, much as for c = 6.8 (Goldstein et al. 1993). The wall modes 
set in at substantially lower values of the Rayleigh number than the m = 0 mode whose 
threshold is approximated the best by the results for an unbounded layer used in their 
interpretation (cf. figure 126). In this sense the presence of the walls is destabilizing. In 
addition the wall modes precess rigidly, and hence produce a time-independent Nusselt 
number. The break in the Nusselt-number slope is likely to arise from an instability to 
the body modes at higher Rayleigh numbers. These modes have a non-zero amplitude 
throughout the container and hence are much more efficient at heat transport than the 
wall modes. Moreover they are first excited precisely near R,(Q). Indeed Zhong et al. 
(1993) have seen the centre of their container ‘fill in’ abruptly with increasing Rayleigh 
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number, and attributed this to the appearance of a new mode of instability. Similar 
breaks in the Nusselt number have also been observed by Thurlow (1993) and a similar 
interpretation applies to his results as well as to those of Rossby (1969). Our 
calculations present a number of quantitative predictions for low-Prandtl experiments 
that should prove invaluable when flow visualization finally becomes available. 

6. Discussion 
The results of this paper show that the linear stability problem for the conduction 

state in a rotating cylinder becomes much more complicated for small Prandtl numbers 
than is the case for moderate Prandtl numbers (Goldstein et al. 1993). In particular, the 
multiplicity of modes relevant at low Prandtl numbers can be quite large, and the 
transitions among them as the Prandtl number or rotation rate are varied can be 
exceedingly complex. Like the modes considered by Goldstein et al. all the modes 
discussed in this paper have the simplest possible structure in the vertical direction; 
they differ only in their radial structure, both with respect to the number of radial 
‘nodes’ and the behaviour near the sidewall. This characterization in terms of ‘nodes’ 
is, however, imprecise, since the pure radial modes are coupled through the boundary 
conditions. The modes discussed all have a radial structure that minimizes or nearly 
minimizes the Rayleigh number; no radial overtones are included. We have attempted 
to classify these modes into wall and body modes, a terminology that proved both 
useful and unambiguous for moderate or large Prandtl numbers. At low Prandtl 
numbers we have found that this distinction fails, since for fixed rotation rate a mode 
that is a wall mode at moderate Prandtl numbers metamorphoses into a body mode at 
low Prandtl numbers. Here the term body mode continues to imply that the 
eigenfunction fills the container and peaks near the centre. 

The mode classification is further complicated by the fact that there are two types 
of inertial modes, the wall modes known at larger Prandtl numbers and oscillatory 
modes present for low Prandtl numbers. In both cases it is the Coriolis force that is 
responsible for the presence of the modes. The former exist only in a bounded 
container, while the latter are properly viewed as body modes since they exist even in 
the absence of a sidewall. With decreasing Prandtl number both the wall modes and the 
body modes described by Goldstein et al. (1993) become inertial body modes. In terms 
of our non-dimensionalization the frequency of these oscillations is of order CT?, or 
equivalently of order 252, where 52 is now the dimensional angular velocity of the 
cylinder. Figure 2 shows that at low Prandtl numbers not all modes have a frequency 
of this order, however. There are slowly precessing modes produced through non- 
axisymmetric perturbations of steady axisymmetric modes that are present even at 
small Prandtl numbers. All these modes have higher critical Rayleigh numbers, 
however, than the corresponding inertial modes. 

We have seen that the first unstable mode is very sensitive to the Prandtl number, 
although the modal structure remains similar to that at larger Prandtl numbers. As the 
rotation rate decreases some modes are continuously connected to those of a non- 
rotating cylinder, while others turn around towards larger rotation rates, often through 
a remarkably tortuous process. The modes that turn around clearly owe their existence 
to the rotation, but their connection to the inertial modes identified by varying the 
Prandtl number is not simple. This is due to a phenomenon discovered by Jones (1988), 
who pointed out that in problems of this type tracking a mode around a closed path 
in parameter space (here the CT, F space, for example) does not necessarily restore the 
mode to the original one. This behaviour is related to the presence of multiple 
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eigenvalues of the linear stability problem in the manner discussed by Jones. We have 
been able to uncover this wealth of behaviour only by focusing on the problem with 
idealized boundary conditions at the top and bottom. The complexity we have 
discovered must, however, be borne in mind when attempting to solve similar 
problems, and in particular the present problem with more realistic boundary 
conditions. Consequently the structure visible in the results for these boundary 
conditions must be attributed to the type of behaviour we have uncovered with the 
simpler boundary conditions. 

The problem studied in this paper is a prototype of a large class of problems in which 
broken reflection symmetry plays a significant role. For axisymmetric disturbances the 
eigenvalue problem is real and eigenvalues occur in complex-conjugate pairs. When 
non-axisymmetric disturbances are admitted the linear operator becomes complex; 
complex eigenvalues are now generic and no longer occur in conjugate pairs. It is this 
mathematical property of the linear stability problem that is responsible for the 
prevalence of precessing patterns in rotating systems. We have used this observation 
to explain a number of qualitative features of our results by focusing on the proximity 
of the various Takens-Bogdanov bifurcations present in the axisymmetric state. 
Vestiges of these bifurcations can be seen in figures 2 ,5  and 7. Arguments such as these 
should also prove useful for understanding the dynamics of these modes in the weakly 
nonlinear regime. 

It comes therefore as no surprise that a number of our results bear a qualitative 
resemblance to those obtained by Zhang & Busse (1 987) for the onset of convection in 
rotating spheres. The two problems have the same symmetry properties, and the 
arguments based on the breakup of the TB bifurcation with departures from 
axisymmetry holds for this system as well. In particular Zhang & Busse also find 
‘imperfect’ and ‘hysteretic’ interactions among non-axisymmetric modes. In addition, 
however, they find a new type of transition which they refer to as a ‘switch-over’. At 
this transition two modes of the same azimuthal wavenumber have identical but non- 
zero frequencies. Such an interaction is also a codimension-two bifurcation, the non- 
semisimple double Hopf bifurcation. Zhang & Busse (1987) find that this bifurcation 
is instrumental in producing a switch from a retrograde mode to a prograde mode with 
the same azimuthal wavenumber as the Prandtl number is decreased. We note, finally, 
that similar behaviour also arises in compressible magnetoconvection in an inclined 
magnetic field (Matthews et al. 1992). In this example the ‘hysteresis’ diagrams were 
not observed. This is because their presence is typically accessible only when a second 
symmetry-breaking effect (e.g. rotation) is present. 
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